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ABSTRACT 

Understanding specific multi-dimensional demographics of populations in the United States at 

high resolutions is made difficult by the restriction of data released by the Census Bureau because of 

privacy concerns. Efforts to model these subpopulations have been increasing in recent years. These 

modeled populations have applications in decision making at all levels of government as well as in 

academia and the private sector. Two models have shown promising techniques for incorporating 

multiple levels of data to model sub populations in a meaningful way. These models, the Copula Model 

by Kao et al. (2012) and the Penalized Maximum Entropy Model by Nagle et al. (2014), have been 

applied in different study areas using different attributes. This paper provides a direct comparison which 

is needed to understand the strengths and weakness of each model as well as to assess the possibility of 

expanding their application nationally.   
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Section 1: Introduction 
Publicly released Census data are often not both spatially and demographically detailed enough 

for researchers with questions at finer spatial scales (e.g. neighborhoods). This creates a data gap 

because researchers and planners across the public health, transportation, and public policy domains 

need data with both high spatial and demographic resolutions to understand the intricacies of the 

populations they serve. U.S. Census data are provided in different spatial hierarchies as indicated in 

Figure 1.  The finest scale is blocks followed by block groups, tracts, and ultimately PUMAs. As the spatial 

detail becomes finer, demographic detail is lost. Their relationships are also shown in Figure 1. Figure 1B 

highlights the gap in publically released U.S. Census data. 

 

 

 
Figure 1 A: Block groups are within tracts which are 
within PUMAs.  

 

Figure 1 B: As spatial resolution increases, detailed 
attributes are reduced. Models fill the gap.

 

Table 1, adapted from Nagle et al. (2014), shows the data gap in clearer detail. For example, regional 

totals of black homeowners exist, but block group level counts do not. Researchers use various modeling 

techniques to fill this data gap and overcome the limitations of publicly released data (Wong 1992, 

Beckman et al. 1996, Williamson et al. 1998, Simpson and Tranmer 2005).    
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Table 1. Known joint distributions (PUMA) are distributed to smaller regions (Block Group 1 and Block Group 2) with the aid 
of summary tables (marginal data) from those sub-regions; adapted from Nagle et al. (2014). 

 

Block Group 1 Block Group 2   Region (PUMA) 

 

Own Rent Total Own Rent Total   Own Rent Total 

Black ? ? 12 ? ? 8   15 5 20 

White ? ? 40 ? ? 25   35 30 65 

Total 19 33 52 31 2 33   50 35 85 

 

 

The body of population modelling research is extensive. Many techniques are used, most of 

which principally rely on distributing a known population in a large zone to sub-regions within that zone 

with the help of ancillary information that describes how population should be distributed in these 

smaller zones.  Tanton (2013) provides an overview of the history of many spatial microsimulation 

techniques. For example, Levy et al. (2014) use simulation to model the low income community which is 

vulnerable to economic stressors. Others have used simulation to understand future needs, such as 

aging adult care and child care, when demographic shifts are expected (Lymer et al. 2009, Harding et al. 

2011). Iterative Proportional Fitting (IPF) is a very popular approach. Johnston and Pattie (1993) provide 

a useful examination of past efforts in geography which use IPF, alternatively called Entropy Maximizing 

procedures, and they also show how it is used to model voting patterns. Anderson (2013) provides a 

more recent elaboration on the history of IPF.  Birkin and Clarke (1988) provide an early implementation 

of IPF and demonstrate its flexibility by creating summaries as well as individual units for further 

analysis. Wong (1992) shows how IPF can be impacted by the data distribution and categorization. 

Simpson and Tranmer (2005) improve the use of IPF by demonstrating its use in standard software over 

many dimensions. The IPF procedure has also been used in the transportation planning community by 

others such as Beckman et al. (1996), as part of the TRANSIMS model.  

I compare two recent modelling advances in this paper: Copula Model (Kao et al. 2012) and P-

MEDM (Nagle et al. 2014). Our objective is to assess the strengths and weaknesses of each model within 

the context of scaling to the nation level. To compare these models, I selected a study area comprised of 

varying geographic and demographic circumstances (e.g. rural, urban, affluent, poor, and mixed areas) 

that are expected when scaling nationally. By comparing these two models across this same 

heterogeneous study area, a direct comparison and assessment of model performance under a variety 

of conditions is possible. The model estimates are compared to American Community Survey (ACS) data 



www.manaraa.com

3 
 

summaries. These summaries are referred to in this paper as ACS benchmarks. The ACS is a detailed 

demographic survey that is conducted continually. ACS data are aggregated across time and/or space to 

produce Census summaries for defined regions. For example, the Census single year summaries are only 

available for areas with 65,000 or more people (i.e. large areas), three year summaries are available for 

areas with 20,000 or more people (medium sized areas), and five year summaries for smaller 

areas/populations down to the block group level. Continual surveying allows the ACS five year data 

tables to be updated yearly while maintaining comparable small area spatial resolution provided by 

census long form summary files (U.S. Census 2006). These ACS summaries are used as benchmarks for 

model comparison because they cover the small geographies of interest to researchers and policy 

makers. However, because these data are based on a sample, they are uncertain and thus they have a 

margin of error which provides an opportunity to quantify the uncertainty, i.e. reliability of estimates.   

Background information on the modeling techniques and evaluation methods is provided in the 

following section. Section 3 describes the data and study area. Section 4 contains the results and 

evaluation. Section 5 includes the summary and further considerations. 
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Section 2: Methods 

Modeling Techniques 

P-MEDM 

The penalized maximum entropy model (P-MEDM) is a maximum entropy approach which 

incorporates uncertainty associated with estimates used in the maximum entropy fitting procedure 

(Nagle et al. 2014). Nagle et al. demonstrated this with an example that incorporated the ACS error 

estimates provided by the U.S. Census Bureau. The model is given by Nagle et al. (2014) as 

    ∑
 

 

   
   
   (

   
   
)  ∑

  
 

   
 

   

 

 subject to the relaxed pycnophylactic constraints 

∑       ̂     

    

 

for each constraint   

where   is the sample size,   is the population size, and      is the prior estimate of the population    . 

In the second element of the equation,   
  is the variance of the uncertainty   , where in this paper   is 

the total target region population. I am solving for    , that is the number of individuals like sample 

record   in region  .  The first element of the equation is the maximum entropy approach. This is 

equivalent to the iterative proportional fitting (IPF) procedure discussed in the previous section.  Each 

sample record is distributed to the regions based on their likelihood of occurrence, given the 

constraints. This procedure makes no assumptions about which sample record occurs in which region 

because it relies only on the information provided by the constraints. The second element of the 

equation is the penalty term that allows for the inclusion of uncertainty associated with the constraints. 

The relaxed pycnophylactic constraints here say that when all of the estimates     are summed they will 

equal    ̂ , the expected total population, plus the error associated with the uncertain inputs. 

Pycnophylactic constraints (Tobler 1979) say that the pieces must add to the whole. Nagle et al. (2014) 

relax this by including the error term because without carrying the uncertainty present in the expected 

population through the modeling process, the estimates produced are given as certain, which is not the 

case. The model output is a collection of households equal to the expected number of households for 

each PUMA. Each sample household has been replicated in each block group according to its    . For 

further use, these samples can be used to summarize any variable or combination of variables provided 

in the sample microdata. 
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Copula Model 

Another recent method by Kao et al. (2012) uses statistical copulas to model high resolution 

demographic data. The Copula Model was developed for use in transportation simulation models where 

IPF has been a popular method of synthesizing populations. Kao et al. (2012) note several problems of 

using IPF, notably that of empty cells when certain demographic combinations are not present, 

particularly when using a larger number of variables. Copulas, first described as such by Sklar (1959), are 

a popular statistical approach which uses known marginal distributions to create joint distributions (Kao 

et al. 2012). Copulas can be explained as functions that allow for the connection of multivariate 

distributions to their univariate margins. For example, let   represent an  -dimensional cumulative 

distribution function with univariate margins of         . Sklar (1959) explains that there is an  -

dimensional copula function   such that for an  -dimensional set of random variables  , 

 (       )   (  (  )      (  )  ) where   is the copula parameter representing the 

correlation structure between the marginal variables (Trivedi and Zimmer 2006).  

Kao et al. create synthetic households consistent with the dependence structure of a selection 

of variables from the PUMS microdata and fit these locally using known ACS summaries at the block 

group level. I am using the same six variables used by Kao et al. to generate the households used in our 

comparison. They are: household income, household size, number of workers, number of vehicles, 

highest educational attainment in the household, and total household travel time to work. Some 

copulas are not able to use non-continuous data, meaning that variables, such as number of vehicles, 

must be transformed (Panagiotelis et al. 2012). Also, continuous variables allow for a unique copula to 

represent the relationship between the joint distribution and the margins of the PUMS variables (Nelsen 

2006).  All of the variables of interest are used to define correlation structure and thus construct the 

synthetic households while only two, household income and household size, are used to fit the 

households in block groups. The copula as defined by the cumulative joint distribution of the six 

variables in the sample is used to generate synthetic households. The Copula Model scales the samples 

so they have uniform marginal distributions for the six variables, which allows for the correlation 

structure of the sample data to be preserved in the synthetic households at the PUMA level. This 

structure is not considered when the households are fit at the block group level. The attributes of all of 

the synthetic households in each block group are then summarized to create block group level joint 

distribution tables. The Copula Model can produce nonsensical results if left relatively unconstrained; 

for example, three workers can appear in a two person household. 
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Model Differences 

 These two models have some notable differences. The maximum entropy approach creates 

replicas of the existing microdata at finer spatial scales, while the Copula Model creates new households 

at finer spatial scales. These new households are often similar to the microdata households, but it is 

sometimes advantageous in transportation modelling research for households to have some variation. 

As implemented by Kao et al. (2012), households can have nonsensical results where, for example, three 

workers can appear in a two person household. An important difference between the two models is that 

the P-MEDM model incorporates uncertainty, present when data are created from estimates, in input 

data while the Copula Model does not.  A potential shortcoming of the Copula Model for some 

applications is that it requires continuous variables, or variables that can be transformed into a 

continuous state.  Thus, variables such as race and gender, which can be vital demographic elements in 

some research, are difficult to include. All of the differences identified here are important when 

considering deploying either model at a national scale. 

Evaluation Methods 
 The relationship between variables in ACS summaries and the model estimates for a block group 

geography level is explained in three scenarios as shown in Table 2.  In Scenario A, the models use the 

ACS summaries for certain variables to constrain their estimates which forces the model estimate to 

equal the known ACS summary value for that variable. In Scenario B the models estimates are produced 

for variables with known ACS summary variables but are not constrained by them, and thus do not have 

to match the known ACS summary value. This scenario is used in this paper to evaluate the how well 

models fit the ACS summaries for unconstrained variables. This serves as a proxy for Scenario C, as 

shown in Table 2, where models are used to create estimates for which no ACS summaries exist. 

Scenario C is the situation faced by researchers and planners for whom these models were developed. 
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Table 2. Three scenarios describe the relationship between ACS summaries used as Benchmarks and Model Estimates at the 
block group geography level. 

ACS Summary (Benchmark)   Model Estimate 

Scenario A: 
Known 

Constrained 
        

HH Size 
1 2 3 

Model 
Estimate 

forced to equal 
ACS Summary 
(Benchmark) 

HH Size 
1 2 3 

BG 1 10 16 8 BG 1 10 16 8 

BG 2 3 7 6 BG 2 3 7 6 

Scenario B: 
Known 

Unconstrained 
        

HH Vehicles 
1 2 3 

Model 
Estimate NOT 

forced to equal 
ACS Summary 
(Benchmark) 

HH 
Vehicles 1 2 3 

BG 1 10 16 8 BG 1 12 13 7 

BG 2 3 7 6 BG 2 6 4 11 

Scenario C: Unknown         

HH owner's  
race 

Black White Other 
No ACS 

summary 
(Benchmark) 

Available 

HH 
owner's 

race Black White Other 

BG 1 ? ? ? BG 1 15 1 4 

BG 2 ? ? ? BG 2 5 6 9 

 

 

The models are compared using methods introduced by Ruther et al. (2013) for model 

evaluation and validation and by using Moran’s I.  The methods used by Ruther et al. are: error in 

margin, residuals, and standard allocation error. I use these methods directly or in an altered form. The 

error in margin is useful for understanding the difference between the model allocation of variables 

over the entire study area and the summary table values. This measure allows for a general 

understanding of model performance, even for variables whose known higher resolution distribution is 

unavailable (Ruther et al. 2013). The residuals and standard allocation error (SAE) allow for more 

detailed comparisons of the model allocations with the actual population distribution at various scales 

(Ruther et al. 2013).   
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The residuals are calculated as         where     is the model estimate for block group   and 

     is the ACS summary used as truth for block group  . The residuals are calculated for each block 

group for each model and compared at the block group level. The order in which I calculate the residuals 

makes the interpretation intuitive; Negative values indicate that the model estimate is lower than the 

ACS benchmark value for that block group, while positive numbers mean the model estimate was 

higher.  I have adapted the Standard Allocation Error used by Ruther et al. because I am evaluating the 

measure for each block group instead of at the PUMA level. The SAE used by Ruther et al. is  
∑            

∑      
  

where the sum of absolute residuals is standardized by the sum of the ACS summaries. I adapted the 

formula in two ways: first, the order is the same as used in our residuals so that interpretation is 

intuitive and, second, I incorporated the margin of error associated with the ACS summaries because full 

enumerations are not available. The modified equation for Standardized Errors is 
       

       
  where the 

margin of error for the ACS benchmark in block group   is used for standardization. This allows for the 

uncertainty of the ACS benchmark to be incorporated and direction of the sign indicates whether the fit 

was high or low.  

Normalization of the residuals is also used. The ACS summaries at the PUMA level used in the 

Error in Margin calculation are often available and when this higher level number is available, it provides 

an estimate to which modelled estimates at the block group level can be normalized. The formula for 

this process is:   (
∑  

∑    
) for each block group model estimate    for the entire PUMA.  This 

normalization keeps the population distribution from the models from being vastly different than the 

known higher level number. This normalization to a common number is helpful in this paper because it 

allows comparisons to be relative rather than absolute.   

 The Standardized Errors for each model are also mapped. Mapping the spatial structure of 

model performance helps identify how model strengths and weaknesses vary through space. This allows 

for quick identification of potentially anomalous areas. The Moran’s I is also calculated for these 

mapped Standardized Errors in order to evaluate the residual patterns. Spatial autocorrelation in the 

residuals may indicate insufficiencies in the modeling techniques and/or potentially anomalous areas. 

These methods are newly applied to the Copula Model and applied to the maximum entropy model with 

different arrangements of variables on modern census data and thus are a novel application of this 

validation process. In the case of the Copula Model, this is the first time these methods will be applied. 

For the maximum entropy model, the validation procedures have been adapted to fit modern census 



www.manaraa.com

9 
 

data where Ruther et al. (2013) used 1880 U.S. Census data. Additionally, I am applying the measures at 

the block group level. Visualization of the results is also an important part of this assessment, as 

patterns may appear which otherwise would be missed in a standard table comparison. Following 

Ruther et al. (2013), residuals are also mapped to allow easy tract to tract and block group to block 

group comparisons of model performance using the SAE. Application of these specific comparison 

techniques along with interpretation, recommendations, and suggestions for next steps represent the 

contribution of this work to the population modeling community. 
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Section 3: Data and Study Area 

Data 
For both the P-MEDM and Copula Model, Census ACS PUMS microdata samples and ACS five 

year summary files are used. The microdata for the 5 year interval represent a 5% sample which is much 

more desirable than the single year, 1% microdata samples because of the increased sample size and 

spatial resolution of input tables. The ACS five year summary tables are used to align with the temporal 

period represented by the microdata. Some counties in the U.S. have PUMA/tract/block group 

misalignment problems. These “boundary incongruity” (Voss et al. 1999) issues and methods for 

handling them are discussed by Zandbergen and Ignizio (2010) and will need to be considered for 

national implementation. Because this study focuses on comparison, additional data challenges such as 

boundary incongruity are avoided, thus allowing the results to be interpreted in a more straightforward 

manner. 

The constraining variables used in the study are total household income and household size. 

Using these variables is beneficial because they are variables often used in the research community 

(Mohammadian et al. 2010, Beckerman et al. 1996). A non-constraining variable, the number of vehicles 

per household, is used for univariate evaluation and number of vehicles by household size is used for 

bivariate evaluation. In practice, the variable combinations to be modeled will necessarily be those for 

which estimates do not exist at the desired level of geography. However, for evaluation and comparison 

purposes, it is necessary to model variables for which summaries exist at the desired level of geography.  

Study Area 
The location of the study is Jefferson County, Kentucky, which encapsulates the city of Louisville. 

There are five Public Use Micro Areas (PUMAs) within the county.  This county offers a mix of landscapes 

with primarily urban PUMAs, as well as PUMAs with a mix of urban and rural. This allows for the 

evaluation of the models with different types of geographic boundaries. I examined the structure of the 

variables used in the modeling to determine if the area was suitable for model implementation and 

comparison. As shown in Figure 3, the structure of household income among and within the PUMAs in 

Jefferson County, Kentucky seems to have some variability. PUMA 1701 has a much greater proportion 

of the population in the lower income classes than the rest of the PUMAs. The distribution within the 

PUMAs is also heterogeneous. This indicates that Jefferson County is capable of offering the spatial 

variability necessary to vigorously test robustness of the models. 
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Figure 2. Jefferson County, Kentucky has several PUMAs with a mix of urban and rural areas which provides the variation in 
block group type necessary to compare model performance. 
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Figure 3. Tract Level income distributions for all five PUMAs show variation within and between PUMAs. 
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Section 4: Results and Evaluation 

Univariate: Single Vehicle Households 

Error in Margin 

The first measure, error in margin, is a PUMA level measure that shows how well each model 

predicts the overall count of a variable. Table 3 shows the counts for each model in each PUMA and the 

ACS benchmarks of single vehicle households. Also shown in Table 3 are the PUMA level margins of 

error limits for the ACS benchmark for single vehicle households. The P-MEDM output is much closer to 

the ACS Benchmark value while the Copula Model results are outside of the margin of error for the 

PUMA level ACS benchmark. These PUMA level summaries, used as benchmarks for this study, are often 

available for multivariate combinations where block group and tract level summaries are not available. 

As such, this is the only level of validation available for these models.    

 

Table 3. Error in Margin for single vehicle households for all PUMAs 

PUMA 

Model output Benchmark 

ACS Benchmark 

Margin of Error 

Copula P-MEDM 
ACS 

benchmark 
Low High 

1701 21,188 23,546 23,655 22,655 24,655 

1702 17,734 19,629 19,617 18,896 20,338 

1703 28,016 30,596 30,742 29,776 31,708 

1704 14,487 16,203 16,691 15,908 17,474 

1705 18,411 19,570 19,693 18,832 20,554 

 

 

Residuals 

 The next measure, the residuals, shows how far above or below the ACS benchmark each of the 

model’s outputs reach. This is a simple measure, but it is especially useful because it retains the units of 

the data which allows for a qualitative assessment of the fit. For example, a model estimate of 200 

households for an area with a “true” value of 160 households may be within the acceptable bounds of 

the ACS benchmark margin of error (+/- 50) but the researcher may feel that 40 is unacceptable. I 
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calculated residuals for each block group, for all five PUMAs. The Error in Margin showed that the 

Copula Model estimates were lower that the P-MEDM and the ACS benchmark for all five PUMAs. They 

were outside of the margin of error. This indicates that the residuals at the block group level may be 

systematically lower, too. To make the residual comparison more realistic and useful for relative 

comparison, the modeled estimates are scaled, i.e. normalized, to the ACS benchmark for the PUMA 

level. This is a step that would likely be taken in practice and prevents the analysis at the block group 

level from being a direct reflection of the fact the PUMA overall total for the P-MEDM model is higher 

than the Copula Model, as seen in the Error in Margin. Figure 4 shows the residuals for all block groups 

in PUMA 1702. The gray line represents the margin of error for each block group. Plotting the raw 

residuals allows the researcher to evaluate the fit of the models in the units of the estimate. In Figure 4, 

most of the model estimates for single vehicle households are within 100 households of the ACS 

benchmark and almost all of the modeled results are also within the margin of error line. There is one 

case, block group 0106002, where the model results are 200 households below the ACS benchmark. This 

is close to the margin of error for that block group, but still may not be an acceptable result for the 

researcher. 
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Figure 4. The normalized residuals for all block groups in PUMA 1702. 

 

It is also useful to think about these normalized residuals as a whole. For PUMA 1702, shown in 

Figure 4, the P-MEDM fitted results are closer to the ACS benchmark twice as often as the Copula Model 

results. Table 4 shows the count of times each normalized model was closer to the ACS benchmark by 

whether the block group was urban or rural. However, Figure 4 shows that “closer” is not considerably 

different. The P-MEDM model had more estimates that were closer to ACS benchmark in four out of five 

PUMAs. The one PUMA where the Copula Model had more results that were closer to the ACS 

benchmark was PUMA 1703 which has a mix of urban and rural block groups while the others are much 

more urban.  Interestingly, the P-MEDM fit rural blocks more closely almost every time in that PUMA. 

Table 4 also shows the percentage and total number of times each model was outside the margin of 

error for each PUMA. These numbers are all fairly close with the P-MEDM having slightly more extreme 

values. The total times and percent of times each model was outside the margin of error by urban and 

rural is also shown in Table 4. Although the sample size of 20 rural blocks is a small number, both models 

were outside the bounds of the margin of error twice as often, which is certainly an important 
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observation. This indicates that because there is a mixture of urban and rural, the minority rural blocks 

are being fitted more poorly. It is possible that these models would fit the urban areas more poorly in 

mixed PUMAs that are predominately rural with some urban. Additional testing needs to be done to test 

this scenario.  It is important to note that the models tend to trend together; when one is high, the 

other is high and neither accounts for all of the extremes. 

 

Table 4. Count of times each model was closer to the ACS benchmark for single vehicle households in each block group by 

PUMA and urban/rural designation and number and percentage of times each model was outside margin of error. 

PUMA 

Closer to ACS Benchmark 

  

Outside Margin of Error 

Urban (N=536) Rural (N=20) Count Percentage 

Copula P-MEDM Copula P-MEDM Copula P-MEDM Copula P-MEDM 

1701 70 74 3 0 19 18 12.9 12.2 

1702 34 60 0 0 11 12 11.7 12.8 

1703 67 49 1 10 18 22 14.2 17.3 

1704 35 44 0 2 14 15 17.3 18.5 

1705 43 60 3 1 19 17 17.8 15.9 

  

  

Urban 74 77 13.8 14.4 

Rural 7 7 35.0 35.0 

 

 

Spearman’s Rank correlations were also calculated between model outputs and between the 

each model output and the ACS benchmark. Table 5 shows these correlations. The P-MEDM model is 

more highly correlated with the ACS benchmark in all PUMAs, although not by a great margin. The high 

correlation between the model outputs underlines the relationship between models at the block group 

level shown in Figure 4 of the residual plots.  
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Table 5. The Spearman's Rank Correlations between models and between models and ACS Benchmark for single vehicle 

households by PUMA. 

PUMA Copula/P-MEDM Copula/ACS P-MEDM/ACS 

1701 0.9798 0.8366 0.8400 

1702 0.9788 0.8709 0.8918 

1703 0.9870 0.9267 0.9337 

1704 0.9881 0.9216 0.9339 

1705 0.9812 0.8417 0.8680 

 

 

Standardized Error 

 The Standardized Error allows us to understand when model fit is extremely outside of normal. 

The Standardized Error is the residual divided by the margin of error. In this paper the margin of error is 

used to account for the uncertainty present in the ACS benchmark estimates. Figure 5 shows the block 

group distribution of Standardized Error for PUMA 1704. The Standardized Error is similar to a z-score 

which means the expected value is usually between -2 and 2. In PUMA 1704, as in all of the other 

PUMAs, almost all values are within that range.  Figure 5 shows that the models tend to trend together 

with the high values being no exception.  Table 6 shows the summary statistics for the Standardized 

Error values for both models in all PUMAs. PUMA 1701 had one block group with an extremely high 

value, pulling the max to double all of the other PUMA max values. In this case, the ACS truth was close 

to zero with the modeled values over 100.  
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Figure 5. Block group distribution of Standardized Error for PUMA 1704. 

 

Table 6. Summary statistics for the Standardized Error values for both models in all PUMAs. 

  Copula     P-MEDM 

PUMA Min Max Mean Median   PUMA Min Max Mean Median 

1701 -1.11 8.23 0.19 -0.06   1701 -1.19 8.91 0.17 -0.01 

1702 -1.12 2.29 0.18 0.08   1702 -1.25 2.80 0.15 0.08 

1703 -1.59 4.07 0.23 0.14   1703 -1.72 3.35 0.19 0.05 

1704 -1.09 3.52 0.23 0.10   1704 -1.12 4.31 0.21 0.06 

1705 -1.22 3.91 0.21 0.01   1705 -1.55 4.04 0.19 -0.04 
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Moran’s I 

 Moran’s I is used to assess whether the spatial distribution of a set of values is not random 

(Moran 1950). The null hypothesis is that the distribution is random, so a significant p-value means that 

the distribution shows spatial autocorrelation, i.e. it is different from random. For this study, Moran’s I 

tests were conducted for the Standardized Errors, described in the Evaluation Methods section, instead 

of the residuals because differences in residuals between areas are affected by population differences 

which bias the test (Waldhor 1996). Table 7 shows the results of the Moran’s I for each model in each 

PUMA. Overall, both models show similar results for each PUMA.  Only PUMA 1702 has a significant p-

value for either model, indicating the distribution is not random. PUMA 1705 was close to significant 

while the rest were not. One interesting note is the sign change on the Moran’s I for PUMA 1704. The 

others are leaning in the positive direction, including PUMA 1702, where there is a non-random 

clustering relationship between block groups Standardized Errors. Figure 6 is a map of the P-MEDM 

Standardized Errors for PUMA 1704. There are several instances of very high differences near very low 

differences, which may cause the negative lean in the Moran’s I statistic. Figure 7 is a map of the Copula 

Model Standardized Errors for PUMA 1702. In this map, the high values are often paired with other high 

values and the lowest values are often surrounded by other low values.   

 

Table 7. Moran’s I for each model in each PUMA. 

PUMA Model p-value 
Moran's I 
statistic 

Expected value 

1701 
Copula 0.1446 0.0388 

-0.0068 
P-MEDM 0.2052 0.0295 

1702 
Copula 0.0132 0.1260 

-0.0108 
P-MEDM 0.0541 0.0881 

1703 
Copula 0.2814 0.0230 

-0.0079 
P-MEDM 0.3387 0.0143 

1704 
Copula 0.8026 -0.0682 

-0.0125 
P-MEDM 0.6974 -0.0468 

1705 
Copula 0.0836 0.0700 

-0.0094 
P-MEDM 0.0906 0.0675 
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Figure 6. P-MEDM Standardized Errors for PUMA 1704 show dispersion indicated by Moran’s I. 

 

 

Figure 7. Copula Model Standardized Errors for PUMA 1702 show some clustering as indicated by Moran’s I. 
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Bivariate: Two person household with one vehicle available 
For the first set of tests I used a single variable. In reality, multiple variables will be more desirable, 

because the joint distributions of these are the ones that are not available at the small geographies such 

as the block group or tract. There are fewer summaries available for multivariate combinations so 

modeling is more important for these cases. For the second set of tests, the combination of household 

size and vehicles available is used. Examples and comparisons are made using two person households 

with one vehicle available.  

 Table 8 shows an example contingency table distribution from which this variable combination 

is a subset. The estimate for each tract is collected from a contingency table and used in this analysis. 

Because block group summaries are unavailable for use as benchmarks, tract level summaries, which are 

spatially coarser, are compared. The limited bivariate combination selection for use in this comparison 

illustrates the need for alternative methods for estimating populations at these small geographies. 

 

Table 8. A contingency table shows the bivariate distribution for PUMA 1701. The subset of variables used in the bivariate 
analysis is highlighted. 

PUMA 
1701 

Vehicles Available 

  0 1 2 3 4 5 6 

H
o

u
se

h
o

ld
 S

iz
e 

1 9922 8038 2959 536 80 7 2 

2 3932 6676 4205 982 143 7 3 

3 1323 3252 2675 772 142 11 2 

4 748 2051 1947 708 193 10 2 

5 179 677 798 315 99 10 0 

6 89 337 416 193 62 8 7 

7 39 127 172 88 26 4 1 

8 4 28 49 35 31 2 1 

9 1 0 2 3 1 0 0 

10 0 0 1 1 0 0 0 

11 0 2 6 6 11 0 0 

12 0 0 0 0 1 0 0 

 

 

Error in Margin 

The error in margin is a PUMA level measure that shows how well the overall count is estimated 

by the models. As seen in Table 9, the Copula Model is estimating much higher numbers of two person 

one vehicle households than either the P-MEDM or the ACS Benchmarks for the PUMA. Also for all of 

the PUMAs other than 1701, the Copula Model estimate exceeds the high end of the margin of error for 
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the ACS Benchmark while the P-MEDM estimate remains within the margin of error. The estimate 

produced by the copula model is especially high for PUMA 1703. As with the single variable, one of the 

models is consistently higher than the other. It should be noted that when a higher level summary is 

available, it is suitable to scale, i.e. normalize, to that summary number so that relative differences can 

be compared with the other metrics. 

 

Table 9. Counts of two person single vehicle households in each PUMA for both models and the ACS Benchmark show Error 

in Margin. 

PUMA 

Models Benchmark 
Margin of Error 
Of Benchmark 

Copula P-MEDM ACS  Low High 

1701 6,676 5,715 5,912 5,092 6,732 

1702 5,776 3,448 3,604 2,979 4,229 

1703 10,260 6,377 6,257 5,456 7,058 

1704 5,353 3,676 4,114 3,400 4,828 

1705 6,604 4,503 4,675 3,946 5,404 

 

 

Residuals 

 The residuals show tract level deviation from the ACS Benchmark and provide an assessment of 

individual level fit. These were calculated at the tract level for all five pumas. There are no block group 

level summaries for this bivariate combination, so tract level summaries are used instead. Again, the 

model estimates are normalized to the ACS Benchmark for a relative comparison. This is done to 

overcome the absolute differences shown in the Error in Margin. Figure 8 shows the normalized 

residuals for all tracts in PUMA 1705. The gray line represents the margin of error for each tract. There 

are pairs of points for each tract. Most points fall within +/-50 of the estimate and a few of the points 

fall outside of the margin of error.  This plot clearly shows that the models trend together. When one 

model is high, the other is similarly high. This same trend is seen in the other PUMA plots as well.  Most 

instances of points falling above or below the margin of error line are similar to the points for tract 

009000; the points are over 100 households from the ACS Benchmark, but the margin of error is very 

high as well. The remaining instances are similar to tract 012203, where the model estimates are over 
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100 households from the ACS Benchmark, but the margin of error is much lower. These are the cases 

where the results indicate that there may be underlying processes that are not being considered, which 

may be a problem for the researcher. For example, this tract is an urban tract that borders a rural tract, 

which may indicate change in the structure of the population at the tract level.  

Table 10 shows the count of normalized model estimates that are closer to the ACS Benchmark 

for each PUMA by urban/rural. Also shown are the count and percent of times each normalized model 

estimate was outside the margin of error of the ACS Benchmark. The Copula Model often has more tract 

estimates that are closer to the ACS Benchmark. However, as Figure 8 shows, the closer model is often 

not especially different or better than the other. Both models have similar counts of times outside the 

MOE. Table 10 also shows that, when considering  all PUMAs, both models are outside the margin of 

error over twice as often in rural tracts versus urban tracts. This indicates some difference between each 

model’s ability to fit in the urban and rural areas in these PUMAs. In this particular case, having a small 

number of rural tracts in a mostly urban PUMA may make it harder for any model to fit the benchmark. 

This ratio of urban to rural geographies is not uncommon and these situations will need to be handled 

carefully when modeling at the nation scale, no matter which model is used. More broadly, there may 

be issues when any type of area is a minority type in a given PUMA. Examples may include PUMAs with 

mostly rural areas and a central town, colleges in small communities, as well as military bases and 

prisons where the populations would be very different than the surrounding populations. 
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Figure 8. Normalized residuals for tracts in PUMA 1705. 

 

Table 10. The number of tracts where each model was closer to the ACS Benchmark for all PUMAs, broken down by 

urban/rural designation.  

PUMA5 

Closer to ACS Benchmark 

  

Outside Margin of Error 

Rural (N= 11) Urban (N=159) Count Percentage 

Copula P-MEDM Copula P-MEDM Copula P-MEDM Copula P-MEDM 

1701 0 1 22 22 5 3 11.1 6.7 

1702 0 0 19 12 3 3 9.7 9.7 

1703 2 4 14 19 7 7 17.9 17.9 

1704 1 0 13 9 2 2 8.7 8.7 

1705 1 2 17 12 4 6 12.5 18.8 

  

  

Urban 18 18 11.3 11.3 

Rural 3 3 27.3 27.3 
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The Spearman’s Rank correlation was assessed between the model outputs and between each 

model output and the ACS Benchmark as an additional comparison. Table 11 shows these correlations 

for all five PUMAs. The models themselves are highly correlated, while the P-MEDM model was always 

slightly more correlated with the ACS Benchmark. This reinforces the closeness of the modeled results 

shown by the residual plots in Figure 8.  

 

Table 11. Spearman's Rank correlation for all 5 PUMAs for two person single vehicle household counts. 

PUMA Copula/P-MEDM Copula/ACS P-MEDM/ACS 

1701 0.9267 0.7227 0.7366 

1702 0.9428 0.7123 0.7433 

1703 0.9697 0.6688 0.6930 

1704 0.9686 0.6113 0.6513 

1705 0.9767 0.7729 0.7790 

 

 

Standardized Error 

 The Standardized Error allows us to understand when model fit is extremely outside of normal. 

Figure 9 shows the tract distribution of the Standardized Error for PUMA 1705. Much like a z-score, the 

expected value is somewhere between -2 and 2. Most tracts in all of the PUMAs have values within this 

range. PUMA 1705 has some exceptions. One notable exception is tract 012203. This is a tract where the 

residual plot in Figure 8 showed great disparity between the model estimate points and the margin of 

error.  One other tract, 012103, has a similarly high Standardized Error. Using both the Standardized 

Error and the residual plots allow for the identification of both tracts that are potentially issues with the 

residuals maintaining the context of the original units. Table 12 shows the summary statistics for the 

Standardized Error values for both models across all PUMAs. PUMA 1705, as shown in Figure 9 has the 

highest values and the rest of the PUMAs have maximum values fairly close to the upper expected value 

for the Standardized Error.  
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Figure 9. Normalized Standardized Errors for each tract in PUMA 1705 for two person single vehicle households. 

 

Table 12. Summary Statistics for Standardized Errors for all PUMAs.  

PUMA 

Copula 

  

  

PUMA 

P-MEDM 

Min Max Mean Median Min Max Mean Median 

1701 -0.99 1.29 0.07 0.05 1701 -1.14 1.83 0.08 0.00 

1702 -0.96 2.78 0.13 -0.08 1702 -0.94 2.40 0.14 0.00 

1703 -1.69 2.25 0.12 0.11   1703 -1.60 1.81 0.13 0.12 

1704 -0.81 1.83 0.06 -0.20   1704 -0.89 2.25 0.07 -0.15 

1705 -1.16 4.06 0.24 0.04   1705 -1.26 3.94 0.23 0.00 
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Moran’s I 

 Moran’s I tests were conducted for the Standardized Errors, which account for population, for 

each model in each PUMA to evaluate spatial autocorrelation. Results from the non-normalized 

Standardized Errors are reported here. Tests were done using the normalized data as well as row 

standardized weights matrix and the patterns were the same. Table 13 shows Standardized Errors for 

both models in PUMA 1703 as being significantly positively spatially autocorrelated. Weak amounts of 

spatial autocorrelation are seen in the Standardized Errors for both models in most of the PUMAs. 

PUMA 1702, however, is the exception. These Standardized Errors are more dispersed than expected 

according to the Moran’s I statistic, but not at a significant level. Standardized Errors for PUMA 1702 for 

the Copula Model are shown in Figure 10. The highest Standardized Errors are not clustered and high 

and low values are often neighbors. Figure 11 shows a map of the Copula Model Standardized Errors for 

PUMA 1703, where the most significant p-value occurred. The lowest values are somewhat clustered in 

the west with most of the highest values occurring near the rural edge of the PUMA.  

 

Table 13. Moran's I of Standardized Errors for all PUMAs for two person single vehicle households. 

PUMA Model p-value Moran's I statistic Expected Value 

1701 
Copula 0.0900 0.0916 

-0.0227 
P-MEDM 0.4461 -0.0110 

1702 
Copula 0.7175 -0.0881 

-0.0333 
P-MEDM 0.7711 -0.1041 

1703 
Copula 0.0411 0.1370 

-0.0263 
P-MEDM 0.0154 0.1728 

1704 
Copula 0.0787 0.1037 

-0.0455 
P-MEDM 0.1979 0.0482 

1705 
Copula 0.1546 0.0604 

-0.0323 
P-MEDM 0.3242 0.0096 
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Figure 10. Standardized errors for Copula Model for PUMA 1702 show dispersion indicated by Moran’s I. 

 

 

Figure 11. Standardized Errors for Copula Model in PUMA 1703 show clustering indicated by Moran’s I. 
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Section 5: Summary and Further Considerations 

Summary 
First and foremost, when choosing the better of two options, one must decide what better 

means. For this study, fitting the estimates well is certainly important. The measures used here most 

certainly allow for that evaluation. In all PUMAs for both the univariate and bivariate tests, the P-MEDM 

model had a closer overall fit, as shown by the error in margin. Based on this, the P-MEDM model would 

be the better choice because it is more stable. There are some situations however, where an overall 

total may be known and used, making the model outputs effectively weights. Thus, the absolute fit is 

not as important as the relative fit. This relative fit is evaluated by the normalized residual plots in this 

paper and the correlations of the residuals. The better model according to these measures is less clear; 

both models were very similar in their relative distributions. These situations, while relevant, are 

specific, meaning the P-MEDM is still most often the better choice. 

 The spatial autocorrelation found using Moran’s I helped indicate underlying differences 

between areas in the PUMAs, particularly in the case of PUMA 1703 where urban/rural differences may 

be contributing to the over or under prediction by the models. Further exploration at the block group 

and tract level may also indicate the limitations of the ACS estimates as a benchmark. Figure 12 shows 

an up close picture of the block group with the maximum Standardized Error in PUMA 1701. The housing 

structure of nearby block groups is similar but the ACS Benchmarks are very different. This indicates that 

the ACS estimates used as benchmarks may have limitations.  

 The overall performance of the P-MEDM indicates that this model is likely to be more stable 

when considering implementation at a national scale. This model takes far less time to compute and also 

provides more flexibility in the variable selection. However, as indicated by the Standardized Errors and 

the Moran’s I, areas with variations in the make up of blocks groups and tracts may prove problematic, 

as was the case in PUMAs with uneven mixtures of urban and rural areas. 
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Figure 12. The block group in red has a very high Standardized Error. Nearby block groups with similar housing structures 
show very different ACS Benchmarks (labeled in white) indicating possible limitations of the ACS Benchmarks. 

 

Further Considerations 
Although this research produced a useful comparison of two promising models, there are some 

considerations that must be addressed to scale either model to a national implementation. An 

important problem is that geographic boundary alignment issues occur frequently. Most happen when 

areal units are not required to nest, which results in a single small area occurring in multiple large areas, 

i.e. one block group overlapping two PUMAs.  For the data types used in this paper, alignment issues 

exist between PUMA boundaries from the 2000 vintage and the block group and tract boundaries, 

especially those from the 2010 census, because pre-2010 PUMAs were not required to nest with other 

Census geographies. These “boundary incongruity” issues have been discussed and remedies have been 

explored (Voss et al. 1999, Zandbergen and Ignizio, 2010). This issue affects all releases of ACS data. The 

2010 PUMA boundaries were designed to fix this issue, but data releases, such as the 3-year and 5-year 
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summaries, spanning years where two sets of boundaries were used, will have misalignment issues as 

well. This means that five year microdata are likely to have two sets of underlying geographies. A 

possible solution would be splitting these data, fitting a model, and combining the results, which would 

double the effort for a national implementation.  

Another consideration of the data produced by either model is that when a model over 

estimates in one area, it will underestimate somewhere else. This is true because the population 

balance is maintained at the higher level. Figure 13 shows this relationship for the bivariate model 

outputs in PUMA 1701. I found and discussed in Section 4 an over estimation of two person single 

vehicle households by the Copula Model. Figure 13 shows that other single vehicle counts for the Copula 

Model were under estimated as were the two person two vehicle households. Scaling (normalizing) at 

the PUMA level when possible is a way this issue could be mitigated. By addressing these further issues 

and exploring the areas where the comparisons indicated deficiencies in the modeling, national level 

implementation will be highly achievable.   
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Figure 13. The full joint distribution of household size and vehicles available for PUMA 1701 has 20 cases. When a model 
estimate is high in one combination of variables, it will be low elsewhere. 

 

 Finally, the Copula Model as implemented in Kao et al. (2012) does not take advantage of the 

weights that are provided with the PUMS data by the U.S. Census. These weights play an important role 

in the P-MEDM model and they are meant to give a complete representation of structure of all of the 

households in the PUMA. Some microdata households in the PUMA are expected to occur more often 

than others, as indicated by the associated weight. Ignoring these weights effectively gives each 
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microdata household equal weight, which distorts the relationships between the PUMS microdata 

households. Table 14 shows the unweighted (upper right) and weighted (lower left) correlations 

between variables used in the Copula Model in PUMA 1701. The weighted correlation values are lower 

11 out of 15 times.  

 

Table 14. Correlations between variables used in the Copula Model for 1701. Unweighted correlations, as used in the in Kao 
et al. 2012, are shown on the upper right. On the lower left, the weighted alternatives are lower 11 out of 15 times.  

 

  

 

Household 
Income 

Persons In 
HH 

Workers in 
Family 

Vehicles 
Available 

Max 
Education 

Total 
Travel 
Time 

Household 
Income 

 

0.4206 0.5186 0.6047 0.3924 0.5476 

Persons In 
HH 

0.3231 

 

0.5810 0.4149 0.1781 0.3966 

Workers in 
Family 

0.5324 0.5409 
 

0.4619 0.3462 0.6551 

Vehicles 
Available 

0.5587 0.3105 0.4661 

 

0.3047 0.3884 

Max 
Education 

0.4124 0.1470 0.3280 0.2975 

 

0.3130 

Total Travel 
Time 

0.5449 0.3402 0.6558 0.3649 0.3036 
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